Skip to main content

HTRF mAb Anti-FLAG Tb-Conjugate, 1,000 Assay Points

Tb cryptate-labeled anti-FLAG M2 antibody for capturing FLAG M2-tagged proteins in protein/protein interaction assays.

Important notice: Product update

Please be informed that references 61FG2TLF/A/B will be replaced by 61FGBTLF/A/B in the upcoming months. We recommend transitioning to the new products at your earliest convenience.

Feature Specification
Application Protein-Protein Interaction

Tb cryptate-labeled anti-FLAG M2 antibody for capturing FLAG M2-tagged proteins in protein/protein interaction assays.

Important notice: Product update

Please be informed that references 61FG2TLF/A/B will be replaced by 61FGBTLF/A/B in the upcoming months. We recommend transitioning to the new products at your earliest convenience.

Product Variants
For research use only. Not for use in diagnostic procedures.
Request More Information

Overview

MAb Anti FLAG M2-Tb cryptate is an IgG1 raised against FLAG® fusion proteins labeled with Tb. Unlike anti-FLAG®M1 antibody, the M2 antibody will recognize the FLAG® sequence at the N-terminus or C-terminus of FLAG® fusion proteins.

This reagent can be used in both biochemical and cellular formats to study a wide variety of interactions: protein/protein, protein/peptide, protein/DNA, protein/RNA, protein/carbohydrate, protein/small molecule, receptor/ligand.

HTRF can detect a broad range of affinity constants ranging from picomolar to low millimolar.

Specifications

Application
Protein-Protein Interaction
Brand
HTRF
Detection Modality
HTRF
Product Group
Fluorescent Reagent
Shipping Conditions
Shipped Ambient
Target Class
Binding Assay
Technology
TR-FRET
Therapeutic Area
Cardiovascular
Infectious Diseases
Inflammation
Metabolism/Diabetes
NASH/Fibrosis
Neuroscience
Oncology & Inflammation
Rare Diseases
Unit Size
1,000 Assay Points

Video gallery

Citations

How it works

Assay principle

In an HTRF interaction assay, one partner is labeled (directly or indirectly) with the donor, and the other with the acceptor (again, directly or indirectly). The intensity of the signal is proportional to the binding of the 2 partners. In the example shown here: MAb Anti FLAG M2-Tb cryptate binds to the FLAG M2 tagged partner A while partner B* binds to a specific Ab labeled with an HTRF acceptor. *partner B can also be biotinylated, tagged, Fc fused. In these cases, use the corresponding HTRF reagent (anti-Tag, anti-species, protA, Streptavidin) labeled with acceptor for the detection.

HTRF MAb Anti FLAG M2-Tb cryptate 1.svg

 

Assay protocol

The example on the right describes the protocol using a 20 µL final assay volume for detecting an interaction between a FLAG M2-tagged partner A and a non-tagged partner B*. Dispense the 2 partners (10 µL), incubate, add MAb Anti FLAG M2-Tb cryptate (5 µL) and anti-partner B labeled with acceptor (5 µL), incubate and read. *partner B can also be biotinylated, tagged, Fc fused or directly labeled. In these cases, use the corresponding HTRF reagent (anti-Tag, anti species, protA, Streptavidin) labeled with acceptor for the detection.

HTRF MAb Anti FLAG M2-Tb cryptate 2.svg

 

Assay details

How do the number of tests relate to active moiety?

The average conjugate quantity per well reflects overall biological material content. Using the active moiety amount is generally preferred to the quantity of total conjugate. For Cryptate and d2 conjugates, the total conjugate amount equals that of the active moiety, since the molecular weight of the label is negligible. This is not the case for XL665 labeled entities for which the quantity of total conjugate will vary depending on the final molar ratio of the XL665 conjugate, however, the amount of active moiety, provided by Revvity, is constant and based on the number of tests ordered.

HTRF MAb Anti FLAG M2-Tb cryptate 3.svg

 

Recommended quantities of Cryptate and XL665 conjugates

Cryptate conjugates must not be excessive in order to prevent reader saturation and an unacceptable level of background. In most cases, a cryptate concentration of 1 to 5nM is appropriate, and will generate 20,000 to 80,000 cps at 620 nm depending on the HTRF compatible reader used. The XL665 conjugate must match its assay counterpart as closely as possible in order for the maximum number of biomolecules to be tagged with the XL665 acceptor. Thus, to detect a tagged molecule at an assay concentration of 20nM, the concentration of anti-Tag-XL665 should be equimolar or higher.

Resources

Are you looking for resources, click on the resource type to explore further.

1-1 of 1 Resources
Guide Icon
Guide
HTRF solutions, guide to major applications

This guide provides you an overview of HTRF applications in several therapeutic areas.

Scroll Icon